Principles of Foundation Engineering

Braja M. Das

Chapter 8 Retaining Walls

Moments

Review Moments

Types of retaining walls

Dimensions

Approximate dimensions for various components of retaining wall for initial stability checks: cantilever wall

Active Earth Pressure

Stability Issues

Bearing Capacity Global Stability

(b)

Failure of retaining wall: (a) by overturning (b) by sliding (c) by bearing capacity failure (d) by deep-seated shear failure

Deep-seated shear failure

Check for overturning, assuming that the Rankine pressure is valid

Forces at Work

Overturning

Active Earth Pressure Using H'
Any load along top – q

Resisting

Weight of Soil (1 & 2)

• Weight of Structure (3, 4 & 5)

Bearing Capacity of Base

Passive Pressure Against Base

Point of Rotation

Moment Table

Procedure for Calculating ΣM_R					
Section	Area	Weight per unit length of wall	Moment arm measured from C	Momen about C	
1	2	3	4	5	
1	A1	$W_1 = \gamma_1 \cdot A_1$	X1	M 1	
2	A2	$W_2 = \gamma_2 \cdot A_2$	X2	M2	
3	A3	$W_3 = \gamma_3 \cdot A_3$	Хз	Мз	
4	A4	$W_4 = \gamma_4 \cdot A_4$	X4	M4	
5	A5	$W_5 = \gamma_5 \bullet A_5$	X5	M5	
6	A6	$W_6 = \gamma_6 \cdot A_6$	X_6	M6	
		Pv	В	M⊻	
		Σν		ΣΜ	

 P_V = Vertical Component of P_a if sloped ground

Pp neglected in overturning

Always build the moment table

C = Point of Rotation

Check Overturning

Overturning (Continued)

Check for sliding along the base

Coefficient of Friction

Coefficient of Friction for Cohesionless Soil

Material	tan δ	δ
Wood	0.40	22°
Rough concrete, cast against soil	$tan \phi$	φ
Smooth, formed concrete	0.3-0.4	17°
Clean steel	0.20	11°
Rusty steel	0.40	22°
Corrugated metal	$tan \phi$	φ

Alternatives for increasing the factor of safety with respect to sliding

Check for bearing capacity failure

Bearing Capacity

Example

Review Example 8.1 on Page 390-393

MSE Walls

Mechanically Stabilized Earth (MSE) Walls

Geogrid Reinforcement for MSE

(Courtesy of Tensar International Corporation)

How Geogrids Work

Similar Checks to Retaining Wall

Figure 8.24 External stability checks (After Transportation Research Board, 1995) (From Transportation Research Circular 444: Mechanically Stabilized Earth Walls. Transportation Research Board, National Research Council, Washington, D.C., 1995, Figure 3, p. 7. Reproduced with permission of the Transportation Research Board.)

Types of MSE Walls

(a) geographical schematic magnation of reasoning wants with geographic remote content. (a) geographic arrangement wall; (b) wall with gabion facing; (c) concrete panel-faced wall (After The Tensar Corporation, 1986).

Geogrid Reinforced Walls

Figure 8.39 (a) HDPE geogridreinforced wall with precast concrete panel facing under construction; (b) Mechanical splice between two pieces of geogrid in the working direction; (c) Segmented concrete-block faced wall reinforced with uniaxial geogrid (Courtesy of Tensar International Corporation, Atlanta, Georgia)

Comments

Active Versus At-Rest Pressures

- You must have sufficient movement to get active pressure
- □ Creep
- Prolonged Rainfall & Groundwater Fluctuations
- Vibrations Due to Traffic and Other Sources
- Temperature
- Tides and Wave Action
- Seismic Events

CE 430

8.1

CE 530 All of CE 430 plus 8.2